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a b s t r a c t

Honokiol (HK) shows potential application in cancer treatment, but its poor water solubility restricts clin-
ical application greatly. In this paper, monomethoxy poly(ethylene glycol)–poly(lactic acid) (MPEG–PLA)
was synthesized by ring-opening polymerization and processed into nanoparticle for honokiol delivery.
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Chemical structure of the synthesized polymer was confirmed by 1H NMR, and its molecular weight
was determined by gel permeation chromatography (GPC). Honokiol loaded MPEG–PLA nanoparticles
were prepared by solvent extract method. And particle size distribution, morphology, drug loading, drug
release profile and anticancer activity in vitro were studied in detail. The described honokiol loaded
MPEG–PLA nanoparticles in this paper might be a novel formulation for honokiol delivery.

© 2009 Elsevier B.V. All rights reserved.

anoparticles

. Introduction

Honokiol (HK), 3′,5-di-2-propenyl-1,1′-biphenyl-2,4′-diol, is
constituent of Chinese medicinal herb Magnolia officinalis/

randiflora. It has a variety of pharmacological effects, such as anti-
nflammatory, antithrombotic, anti-arrhythmic, anti-oxidative,
entral depressant, muscle relaxant and anxiolytic effects (Lo et al.,
994; Maruyama and Kuribara, 2000; Liou et al., 2003). In the past
ecades, many researches suggested that honokiol had anticancer
ctivity and showed potential application in cancer treatment (Bai
t al., 2003; Ahn et al., 2006; Lee et al., 2006; Battle et al., 2005; Xu
t al., 2006; Hahm and Singh, 2007; Sheu et al., 2007). But honokiol
s hydrophobic, vascular administration of honokiol is very diffi-
ult. Therefore, it is interesting to develop novel formulations for
onokiol delivery.

Nanotechnology shows promising application in drug delivery
ystem that accounts for the main part of nanomedicine (Wagner
t al., 2004). Recently, biodegradable polymeric nanoparticles are
ighlighted as advanced drug delivery system for cancer ther-
py (Service, 2005; Ganta et al., 2008). Nowdays, many studies

f anticancer drugs based on biodegradable polymer nanoparti-
les have been performed in the preclinical and clinical research
Wang et al., 2008). Nanotechnology provided a novel method
o overcome the poor water solubility of hydrophobic drugs

∗ Corresponding author. Tel.: +86 28 85164063; fax: +86 28 85164060.
E-mail address: anderson-qian@163.com (Z. Qian).

1 This author did the even work, and is the co-first author for this paper.
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(Saffie-Sieverb et al., 2005). After hydrophobic drug entrapped
into amphiphilic polymeric nanoparticles, drug loaded nanopar-
ticles could be well and stably dispersed in water solution to
meet the requirement of intravenous injection. Previously, we
have successfully prepared the liposomes (Luo et al., 2008; Jiang
et al., 2008; Hou et al., 2008) and nanoparticles/micelle (Gou
et al., 2008a,b; Gong et al., 2008; Wei et al., 2009; Gou et
al., 2009a,b) suitable for the hydrophobic drug delivery. How-
ever, these polymers based on MPEG and PCL have not been
approved by Food and Drug Administration (FDA) for the appli-
cation of clinical intravenous injection. Therefore, there is a long
way in clinical application for nano-drug based on these polymers.
And works around seeking an excellent material for nano-drugs
should be continued. MPEG–PLA diblock copolymer with great
biodegradability and compatibility has been widely applied in
drug delivery system. MPEG–PLA nanoparticle was one widely
studied intravenously injectable drug vectors (Gref et al., 1994;
Matsumoto et al., 1999; Zhang et al., 2006). Meanwhile, nano-
drug based on MPEG–PLA has been paid clinical study (Rapoport,
2007).

In this paper, we intend to develop a novel honokiol for-
mulation based on MPEG–PLA nanoparticle suitable for vascular
administration. The prepared honokiol loaded MPEG–PLA nanopar-
ticle was characterized, and drug release profile has been studied.

Meanwhile, the hemolytic test and MTT had been done to
evaluate the safety of MPEG–PLA nanoparticle as intravenous
drug vector. And the therapeutic evaluation of honokiol loaded
MPEG–PLA nanomedicine will be studied later in our research
group.

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:anderson-qian@163.com
dx.doi.org/10.1016/j.ijpharm.2009.11.014
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. Experimental

.1. Materials

Methyl poly(ethylene glycol) (MPEG, Mn = 5000) and d,l-lactide
ere synthesized in our lab. 3-(4,5-Dimethylthiazol-2-yl)-2,5-
iphenyl tetrazolium bromide (MTT) and stannous octoate
Sn(Oct)2), RPMI 1640, DMEM, were purchased from Sigma (USA).
imethyl sulfoxide (DMSO) and dichloromethane (DCM) were pur-
hased from KeLong Chemicals (Chengdu, China). Acetonitrile (AN)
as purchased from Fisher Scientific (UK). Honokiol was purified

n our laboratory by HSCCC method (Chen et al., 2007).
All the chemicals used in this work were all analytical pure

rade, and used as received except PEG.

.2. Synthesis of MPEG–PLA copolymer

MPEG–PLA diblock copolymer was synthesized by ring-opening
olymerization of lactide in the presence of mono-methyl
oly(ethylene glycol) (MPEG). Briefly, an calculated amount of
,l-lactide, MPEG and Sn(Oct)2 were first added into a flamed
hree-necked glass flask under the protection of nitrogen atmo-
phere. Then, the mixture was heated to 130 ◦C under mechanical
tirring. Ten hours later, the reaction system was degassed under
acuum for another 45 min followed by being cooled to room tem-
erature under the protection of nitrogen atmosphere. Finally,
he crude product of MPEG–PLA copolymer was reprecipitated
rom dichloromethane with excess pre-cold petroleum ether. The

ixture was filtered and vacuum dried to constant weight. The
btained purified MPEG–PLA copolymer was kept in air-tight bags
n desiccator before the further use.

.3. Preparation of blank or honokiol loaded MPEG–PLA
anoparticles

Honokiol loaded MPEG–PLA nanoparticles were prepared by
olvent extract method. Briefly, 400 mg of MPEG–PLA and 50 mg
f HK were co-dissolved in 10 ml acetone kept at 50 ◦C for 5 min to
orm organic phase. Then, the organic phase was quickly added
nto water under moderate mechanical stirring. After 10 min,

ith the diffusion of acetone into water, amphiphilic MPEG–PLA
lock copolymer could self-assemble into nanoparticles and its
ydrophobic core encapsulated HK in aqueous solution. Finally,
he obtained nanoparticles were placed in a dialysis bag (molecular
eight cutoff 8000–14,000 Da) to dialyze against distilled water for
days to remove the remained acetone. Blank MPEG–PLA nanopar-

icles were prepared by the same method except that honokiol
owder was not added.

.4. Physicochemical properties

1H NMR spectra of MPEG–PLA copolymer (in CDCl3) were
ecorded on Varian 400 spectrometer (Varian, USA) at 400 MHz
sing tetramethylsilane as an internal reference standard. The gel
ermeation chromatography (GPC) measurements were conducted
t 25 ◦C with a instrument of HPLC (Agilent 110, USA). The sam-
les were dissolved in freshly distilled tetrahydrofuran (THF) at a
oncentration of 1 mg/ml. THF was eluted at a rate of 1.0 ml/min.

Particle size distribution of nanoparticle was determined by
aser diffraction particle sizer (Nano-ZS, Malvern Instrument, UK).
he zeta potential of HK loaded nanoparticle in water was mea-

ured by Malvern Zeta analyzer (Nano-ZS, Malvern Instrument, UK).
he temperature was kept at 25 ◦C during measuring. And all results
ere the mean of three test runs.

The morphology of prepared nanoparticle was observed on
transmission electron microscope (TEM) (H-6009IV, Hitachi,
harmaceutics 386 (2010) 262–267 263

Japan): nanoparticles were diluted with distilled water and placed
on a copper grid covered with nitrocellulose. The sample was
negatively stained with phosphotungstic acid and dried at room
temperature before observation.

Crystallographic assay was performed on HK powder, blank
MPEG–PLA nanoparticle, and HK loaded MPEG–PLA nanoparticles
by X-ray diffractometer XRD) (X’Pert Pro, Philips, Netherlands)
using Mo K� radiation.

The concentration of HK was determined by High Performance
Liquid Chromatography (HPLC) Instrument (Waters Alliance 2695).
Solvent delivery system equipped with a column heater and a
plus autosampler. Detection was taken on a Waters 2996 detector.
Chromatographic separations were performed on a reversed phase
C18 column (4.6 mm × 150 mm, 5 �m, Sunfire Analysis column).
And the column temperature was kept at 28 ◦C. Acetonitrile/water
(60/40, v/v) was used as eluent at a flow rate of 1 ml/min. Detection
wavelength was 254 nm.

Drug loading and entrapment efficiency were determined as fol-
lows. Briefly, 0.2 ml of drug loaded MPEG–PLA nanoparticle was
introduced into pre-weighed EP tube and was lyophilized to con-
stant weigh. Afterwards, the dried deposit was dissolved in 0.1 ml
dichloromethane and was diluted by acetonitrile. Meanwhile, the
amount of honokiol in the solution was determined by HPLC.
Drug loading (DL) and encapsulation efficiency (EE) of drug loaded
nanoparticles were calculated according to Eqs. (1) and (2):

DL (%) = amount of drug
amount of polymer + drug

× 100 (1)

EE (%) = experimental drug loading
theoretical drug loading

× 100 (2)

2.5. Hemolytic test in vitro

The hemolytic study was performed on MPEG–PLA nanoparticle
in vitro (Gou et al., 2009c). Briefly, 0.5 ml sample at different concen-
trations in normal saline was diluted into 2.5 ml by normal saline
and added into 2.5 ml of rabbit erythrocyte suspension (2%) in nor-
mal saline under 37 ◦C. Normal saline and distilled water were used
as negative and positive control, respectively. Three hours later, the
erythrocyte suspension was centrifuged and the color of the super-
natant was compared with controls. If the supernatant solution was
absolute achromatic, it implied that there was no hemolysis. In
contrast, hemolysis occurred when the supernatant solution was
red.

2.6. In vitro release study

To determine the in vitro release kinetics of honokiol from
nanoparticles, 0.5 ml of HK loaded MPEG–PLA nanoparticles
slurry was placed in a dialysis bag (molecular mass cutoff
8000–14,000 Da), and 0.5 ml of HK solution in DMSO (1 mg/ml)
was used as control. The dialysis bags were incubated in 30 ml
of phosphate buffer (pH = 7.0) containing Tween 80 (0.5%, w/v) at
37 ◦C with gentle shaking, then incubation medium was replaced
by fresh medium at predetermined time points. The released drug
was quantified, and the cumulative release profile with time was
demonstrated. This study was repeated three times, and result was
expressed as mean value ± SD.

2.7. Analysis of cytotoxicity
The cytotoxicity of blank MPEG–PLA nanoparticle, free HK
and nanoparticle encapsulated HK on cisplatin-sensitive (A2780s)
human ovarian cancer cells was evaluation by cell proliferation
assay. Briefly, A2780s cells were plated at a density of 5 × 103 cells
per well in 100 �l of RPMI 1640 medium in 96-well plates and
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rown for 24 h. The cells were then exposed to empty MPEG–PLA
anoparticle, free HK or nanoparticle encapsulated HK at different
oncentrations for 48 h. And free HK dissolved in DMSO at the con-
entration of HK 1 mg/ml and diluted with RPMI 1640 medium to
btain various concentrations of honokiol solution. The cells viabil-
ty was measured by the MTT method. Mainly, each cell was added
o 20 �l 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
olium bromide (MTT) solution and treated for 4 h at 37 ◦C. Then,
he supernatant was fully removed and 150 �l DMSO was added to
er cell, oscillating it for 30 min. After solubilization, the amount
f blue formazan produced by viable cell was measured at 570 nm.
he absorbance of the formed formazan was proportional to the
umber of cells plated. The additional manual counting of the cells
onfirmed the linearity between the number of viable cells and
he absorbance values. Mean percentage of cell survival relative to
hat of untreated cells was estimated from data from six individual
xperiments, and results were expressed as mean value ± SD.

. Results and discussion

Traditionally, almost half of new molecular entities identified
y pharmaceutical industry screening programs have failed to
e developed, because their poor water solubility made their
ormulation difficult or even impossible. It was reported that
onokiol, as a multi-functional drug, has great potential in dis-
ase therapy especially in cancer therapy. Its lipophilicity made
dministration difficult. So, an excellent honokiol formulation was
eeded. Nanotechnology also provides a novel method to over-
ome the poor water solubility of hydrophobic drugs. MPEG–PLA
anoparticle was regarded as safe drug vectors and widely used

n drug delivery (Riley et al., 2001; Dong and Feng, 2004; Lu et al.,
005). Meanwhile, there is still nano-drug based on MPEG–PLA

anoparticles that was proved by FDA to be applied in clinic (Kim et
l., 2004). In this paper, MPEG–PLA was synthesized and processed
nto nanoparticles to load HK to overcome the water solubility
f honokiol. A novel honokiol formulation based on MPEG–PLA
anoparticles was developed.

Fig. 1. 1H NMR spectrum of
Fig. 2. GPC curve of prepared MPEG–PLA.

3.1. The 1H NMR and the GPC of MPEG–PLA copolymers

The molecular structure and molecular weight of prepared
MPEG–PLA copolymers were characterized by 1H NMR and GPC.
As shown in Fig. 1, peaks “a” and “c” were assigned to methyl
group and methylene protons of –CH3, and –CH– in PLA units,
respectively. The peak “b” was attributed to methylene protons of
PEG oxyethylene units. The very weak peak “e” was, respectively
attributed to methylene protons of –O–CH2–CH2– in PEG end block
that linked with PLA blocks. The 1H NMR spectrum suggested that
the MPEG–PLA diblock copolymer was successfully synthesized.

The number-average molecular weight of MPEG–PLA block
copolymers and PEG/PLA block ratios were calculated from 1H NMR
spectra according to Eqs. (3)–(7):

Ib
Id

= 4(x − 2)
2

(3)

Ic
Id

= 3(y − 2)
2

(4)
Mn(PEG) = 44x + 31 (5)

Mn(PLA) = 72y (6)

Mn(MPEG–PLA) = Mn(PEG) + Mn(PLA) (7)

MPEG–PLA in CDCL3.
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Fig. 3. Hemolytic test on the MPEG–PLA nanoparticles. The images were taken on
3 h after reaction. (a) The concentration of MPEG–PLA nanoparticles is 40 mg/ml;
(b) 32 mg/ml; (c) 24 mg/ml; (d) 16 mg/ml; (e) 8 mg/ml. (f) Sample is normal saline
used as negative control and (h) sample is distilled water used as positive control.

Fig. 5. Characterization of MPEG–PLA nanoparticle. (a) Size distribution spectrum deter
morphology of MPEG–PLA nanoparticles determined by TEM; (d) zeta potential determin
Fig. 4. Cytotoxicity of blank MPEG–PLA nanoparticles on human ovarian cancer
cells: A2780s (cisplatin-sensitive).

where Ib, Ic, and Id were integral intensities of peaks at about 3.6,
1.5 and 3.8 ppm, respectively in 1H NMR spectrum of MPEG–PLA
copolymers (Fig. 1). x and y were the respective block num-
ber of PEG and PLA, respectively in macromolecular structure of
MPEG–PLA copolymers. And the molecular weight of MPEG–PLA
was found 10,708 Da.
As shown in Fig. 2, the molecular weight distribution datum
of MPEG–PLA was normal distribution. And the macromolecular
weight distribution (polydispersity, PDI, Mw/Mn) was 1.33. Only a
single peak existed in Fig. 2, which indicated the mono-distribution

mined by laser diffraction size detector, mean size 96 ± 2 nm; (b) optic image; (c)
ed by laser diffraction zeta detector, mean zeta potential −11.3 ± 1.7 V.
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Fig. 7. In vitro release profile of honokiol from MPEG–PLA nanoparticles in PBS
(pH = 7.0) and DMSO at 37 ◦C.
ig. 6. X-ray diffraction spectra. (a) Blank MPEG–PLA nanoparticle crystal; (b)
onokiol-loaded MPEG–PLA nanoparticles; and (c) free honokiol.

f molecular weight. Through GPC, the macromolecular weight of
PEG–PLA was found to be about 10,060 Da. 1H NMR and GPC

esults indicated that the MPEG–PLA copolymer was prepared suc-
essfully.

.2. Safety evaluation of MPEG–PLA nanoparticles in vitro

Hemolytic test was performed on MPEG–PLA nanoparticles. As
hown in Fig. 3, MPEG–PLA nanoparticles at the concentration of
0 mg/ml did not cause any hemolysis on rabbit erythrocyte com-
aring with the negative control (normal saline). Meanwhile, the
ytotoxicity of blank MPEG–PLA was evaluated by cell viability
ssay on A2780 cells which was shown in Fig. 4. According to
ig. 4, cell proliferation was not suppressed by MPEG–PLA nanopar-
icle (2 mg/ml) in vitro, and non-toxicity of prepared MPEG–PLA
anoparticles was implied.

.3. Physical characterization of honokiol loaded MPEG–PLA
anoparticle

HK loaded MPEG–PLA nanoparticle with drug loading of ca. 10%
as chosen for characterization. According to Fig. 5(a), the pre-
ared nanoparticle had the mean particle size of 96 ± 2 nm with
he polydisperse index (PDI) of 0.1.85 ± 0.014. It suggested that the
btained nanoparticle was mono-dispersed and stable in the water
olution. The appearance of prepared HK nanoparticle suspension
as shown in Fig. 5(b). TEM photo as shown in Fig. 5(c) indicated

hat the prepared nanoparticle had sphere appearance with the
ean particle size of ca. 80 nm. Meanwhile, the zeta potential of

he nanoparticle was −11.3 ± 1.7 mV as shown in Fig. 5(d).
Otherwise, the XRD spectra of blank MPEG–PLA nanoparticle

nd HK loaded MPEG–PLA nanoparticle were presented in Fig. 6. In
ig. 6(c), the characteristic peaks of honokiol are the first two which
ere at 14.2542 and 12.5105. These two peaks disappeared in HK

oaded nanoparticle shown in Fig. 6(b), and it implied that honokiol
as molecularly incorporated in MPEG–PLA nanoparticle. With the

ntroduction of hydrophobic HK, the crystallinity of MPEG–PLA was
lightly changed. So the peaks at 4.6 and 3.8 appeared in Fig. 6(b).
The release profile in vitro was evaluated. A sustained release
anner could be visibly observed when HK released from
PEG–PLA nanoparticle as shown in Fig. 7. Only 53% HK released

rom the nanoparticles within 24 h, while free HK released about
00% into the outside media. These physical properties indicated
Fig. 8. Cytotoxicity of honokiol loaded MPEG–PLA nanoparticles on human ovarian
cancer cells A2780s.

that the prepared HK loaded MPEG–PLA nanoparticle was a novel
honokiol formulation which could meet the requirement of intra-
venous injection.

3.4. Anticancer activity of honokiol loaded MPEG–PLA
nanoparticle

The cell viability assays were performed to evaluate the anti-
cancer activity of HK loaded MPEG–PLA nanoparticles and free
HK. Free honokiol and honokiol loaded nanoparticle significantly
decreased the viability of A2780s cells with increase in honokiol
concentration. Fig. 8 showed the influence of drug concentration
and nanoparticle on cell viability. The results indicated that the
cytotoxicity of HK loaded MPEG–PLA nanoparticle was compara-
ble to that of free honokiol and IC50 was 8.45 �g/ml. It implies that
HK loaded MPEG–PLA nanoparticle might had great potential appli-
cation of anticancer effect on cisplatin-sensitive (A2780s) human
ovarian cancer cells in vitro.

4. Conclusion
MPEG–PLA copolymer was successfully synthesized and pro-
cessed into nanoparticle to load honokiol. Encapsulating honokiol
in MPEG–PLA nanoparticle made hydrophobic honokiol to be
injectable. The honokiol loaded MPEG–PLA nanoparticle might be
a novel honokiol formulation.
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